
Error Trapping

Error Trapping

Table of Contents
1. Error Trapping ...7

Actions: When an Error Condition is Detected ...7
Actions: When Error-Handling is Specified ...7
Default Error Processing ...8
User-Defined Error Processing...8

User-Defined Error Processing - $ETRAP...8
User-Defined Error Processing - $ZTRAP...9

Processing Trapped Errors ..9
Using the System Error Trap ..10

%MuErr1 ..10
%MuErr ..10

Using Old Style Error Trapping ...10
Format of $ZERROR ..11
M21 Error Codes...11
M21 Error Numbers ...16
$ECODE Errors...23

2. $STACK ..25
3. $ECODE..27
4. $ESTACK..29
5. $ETRAP...31

5

6

Chapter 1. Error Trapping

Actions: When an Error Condition is Detected
When a disconnection error is detected during program execution, the process termi-
nates and the error is reported as a SIGHUP signal in the log file.

When other error conditions are detected during program execution, the system in-
terrupts execution and performs the following actions:

• Terminates any active FOR loops and indirection on the current line.

• Sets $ZERROR to reflect the error.

• Appends the appropriate error codes to the $ECODE special variable. NOTE : If
$ECODE is updated via the SET command, the entire value of $ECODE is re-
placed.

• Updates the $STACK system function array to reflect the error, setting the ECODE
, MCODE , and PLACE sub-nodes of $STACK($STACK) .

• If no error handling is specified at any execution level ($ETRAP is null, all NEW
ed values of $ETRAP also are null at all execution levels, and there are no non-null
$ZTRAP s at any execution level), generates an execution trace-back and termi-
nates all the execution levels. If the user is in programmer mode, the current device
is changed to the principal device and a command prompt is issued by the system.
If programmer mode is not enabled, the partition is terminated after invoking the
default error handler.

Actions: When Error-Handling is Specified
The following steps are performed if error handling is specified at the current or at
an earlier execution level.

• If $ETRAP is not null, M21 performs an internal GOTO to the following two lines
of M code:

... $ETRAP value ...

QUIT:$QUIT "" Q

The second line handles the case in which the $ETRAP code completes and exe-
cution continues on the second line. The QUIT commands are set up so that the
current execution level terminates correctly depending on whether or not it was
invoked as an extrinsic.

• If $ZTRAP is non-null, M21 internally performs the following line of M code:

GOTO @($ZTRAP)

• As part of the GOTO , the value of $ZTRAP is reset to the null string. If addi-
tional error handling is required at the current execution level, $ZTRAP must be
re-established. M21 terminates the current execution level. This includes restoring

7

Chapter 1. Error Trapping

values stacked by the NEW command (possibly including $ESTACK and $ETRAP
).

• M21 terminates any active FOR loops and indirection in the current execution line.
M21 continues with step 1 above until an execution level is reached that does spec-
ify error handling via $ETRAP or $ZTRAP .

To ensure that error handling is uniquely defined, M21 does not allow both $ETRAP
and $ZTRAP to be non-null at the same time. When $ETRAP is established via the
SET command, M21 internally resets $ZTRAP to the empty string. When $ZTRAP
is established via the SET command, M21 internally performs a NEW command on
$ETRAP and then sets its current value to the empty string (a QUIT from this execu-
tion level restores $ETRAP to its original value). This interaction between $ETRAP
and $ZTRAP allows existing applications that rely on $ZTRAP to coexist with appli-
cations that rely on the ANSI standard method of error trapping.

Default Error Processing
If error handling is not defined, the error processing action to be taken when an error
occurs includes a display of the execution trace-back on the principal device and an
invocation of the M21 default error handler.

The execution trace-back displays the current value of $ZERROR , a formatted dis-
play of each execution level (from the deepest to the initial), followed by a redisplay
of $ZERROR (in case the initial value scrolled off the screen). The formatted display
of a level includes its nesting level ($STACK); the routine reference of the line being
performed or ' *XECUTE* ' if inside an XECUTE string; and a copy of the line of
M code that is being performed, if available (p-code-only routines display null text
lines).

Following the execution trace-back, the ^%MuErr1 utility is invoked to store the par-
tition's current status for later review. This includes saving a copy of all the local
symbols for the partition, $IO , $PRINCIPAL , $ZREFERENCE , and so on. These
values can be examined using the ^%MuErr utility.

User-Defined Error Processing
The programmer can specify the M code that is to be performed when M21 detects
an error. The programmer can use either the 1995 ANSI Standard error processing
features such as $ETRAP or $ECODE or the M21-specific features, $ZERROR and
$ZTRAP .

User-Defined Error Processing - $ETRAP
To use the $ETRAP mechanism, the value of $ETRAP is set to an M string that is
executed when an error is detected. For example:

SET $ETRAP="S X=$X,Y=$Y G ^ERROR"

In this example, when an error is detected, M21 sets the local variables X and Y to the
current values of $X and $Y respectively, and then transfers control to the first line in
routine ^ERROR . This routine can attempt to recover from the error, record the error
and any application-specific information, or allow the error to propagate to the previ-

8

Chapter 1. Error Trapping

ous execution level where it can be handled, recorded, or continue to be propagated
to earlier execution levels. If the error processing routine does not clear $ECODE
before exiting from the execution level where an error occurred, error processing is
still in effect in the new execution level. A common M error handling technique is
to NEW $ESTACK at the top menu level of the application and to continue in error
processing mode until $ESTACK returns to zero.

User-Defined Error Processing - $ZTRAP
To use the $ZTRAP mechanism, the value of $ZTRAP is set to an M entry reference
to which control will be transferred when an error is detected. For example:

SET $ZTRAP="ENTRY^ERROR"

When an error is detected, M21 terminates execution levels one at a time until it
reaches an execution level at which $ZTRAP is not null. M21 then performs a GOTO
to the entry point contained in $ZTRAP and also resets $ZTRAP to the empty string.
The error trap routine can attempt to recover from the error, record the error and any
application-specific information, or force the error to be propagated to an earlier ex-
ecution level that has a non-null $ZTRAP, where the error can be handled, recorded,
or continue to be propagated to earlier execution levels.

Because, on error, M21 internally resets $ZTRAP to null, $ZTRAP must be explicitly
SET to a new non-null value if additional errors are to be trapped at the current
execution level.

Processing Trapped Errors
When a DO or XECUTE command is processed, the M21 system creates a new ex-
ecution level. This is done so that on termination of the DO or XECUTE command,
either through an implicit QUIT (end-of-routine encountered) or an explicit QUIT ,
the system can return to the point at which the command was initiated.

As a point of reference, each execution level created by a DO or XECUTE command
is numbered. Programmer mode is considered to be execution level 0, the first DO or
XECUTE command is level 1, the second is level 2, and so on. The level that is in the
process of execution is generally referred to as the current execution level.

While there is only one $ETRAP special variable (there is not a different one at each
execution level), it can be stacked using the NEW command. This provides a separate
$ETRAP for each level so that each execution level can customise its error handler
independent of other error handling on the execution stack.

Alternatively, the $ZTRAP special variable can be set at each execution level. This
means that each execution level in an application can establish its own error trapping
routine and error recovery procedures.

After an error has been trapped and processed by the specified routine, several tech-
niques can be used to exit from the error trap routine. One method is to use a GOTO
command so that control passes to a new routine, and program processing remains
at the same execution level. This is the most common form of error recovery.

Alternatively, a QUIT command can be used to return to the previous execution level.
When the $ETRAP mechanism is used, execution continues at the next lower level

9

Chapter 1. Error Trapping

(the current execution level minus one), based on the value of $ECODE . If $ECODE
is null, QUIT returns control normally to the previous level, with no further error
processing. If $ECODE is not null and $STACK($STACK,"ECODE") is null (return-
ing from a level with an error to a level at which no error occurred), error processing
continues at the new level.

When using the $ZTRAP mechanism, a QUIT command returns control normally to
the previous level, with no additional error processing. If the error condition has not
been handled, a ZQUIT command can be used to continue error processing on the
previous level.

Using the System Error Trap
The standard error-trapping utility programs supplied with the system provide the
programmer with an alternative to writing error-trapping routines. These standard
utilities include a routine to trap errors (%MuErr1) and a routine to report trapped
errors (%MuErr). These routines are described in this section.

%MuErr1
When an error occurs and the %MuErr1 utility is invoked, the routine stores the
values of the $HOROLOG , $JOB , $IO , $STORAGE , $TEST , $ECODE and $ZER-
ROR special variables; the key of the last global referenced ($ZREFERENCE) and
the contents of the local symbol table. It also stores the UCI number, principle device
number, current device number, process ID, M routine name, M routine line number,
parent job number and the number of the last job JOBbed by this partition.

%MuErr
This utility reports errors that were trapped using the %MuErr1 routine. It allows
one to display, print, delete, or summarise errors.

Using Old Style Error Trapping
In certain old versions of Digital Standard MUMPS (DSM) and Micronetics Standard
MUMPS (MSM), the system discarded the entire contents of the DO / XECUTE stack
when an error occurred. This was done prior to the system passing control to the
error-trap routine specified by the $ZTRAP special variable. In newer versions of
these implementations of M, as in M21, the DO / XECUTE stack remains at the same
level when an error occurs.

Existing applications that rely on the DO / XECUTE stack being cleared using the er-
ror trapping techniques provided in these early versions of M will not work properly.
The recommended solution to this problem is to modify the error-trapping code so
that it does not rely on these outdated techniques. However, this may not be possible
in all cases. As a convenience to our users, a compatibility mode has been provided
which enables error processing to behave as it did in these old versions of M.

The compatibility mode has been implemented as an extension to the BREAK com-
mand. The following describes the implemented compatibility extensions:

10

Chapter 1. Error Trapping

BREAK 2 Old mode DSM/MSM error trapping

BREAK -2 Normal M21 error trapping

When a job is started, the default value is normal M21 error trapping (BREAK -2).
To enable the old style of error trapping, a BREAK command with an argument 2 (
BREAK 2) is inserted at the beginning of the application before any other code is ex-
ecuted. It is strongly recommended that applications be modified to take advantage
of the new error processing capabilities.

Format of $ZERROR
The $ZERROR special variable contains descriptive information about the most re-
cent error. This information is also provided as a piece of the $ECODE special vari-
able when the $ETRAP mechanism of error trapping is used and the error is not
one of the errors that has an ANSI M code number. The format of this descriptive
information is as follows:

<Code>Offset^RoutineName:Command:Argument:Major:Minor:AddInfo

In this display:

Code is the error code

Offset is the location (relative line number) within the routine

RoutineName is the name of the routine

Command is the relative number of the command in the line that is in error

Argument is the number of the argument within the command

Major and Minor are the M21 error numbers

AddInfo contains additional information about the error

Refer to M21 Error Codes and M21 Error Numbers in this document for additional
information.

The M21 system maintains the Command and Argument parameters only when the
debugger (%DEBUG) is active. AddInfo is not maintained for all error types. For
example, when a disk error (<DKHER>) occurs, AddInfo contains the block num-
ber that received the error.

M21 Error Codes
The following table lists the error codes that are produced by the M21 system and
describes how the errors are caused.

Table 1-1.

Code Explanation

11

Chapter 1. Error Trapping

<BKERR> The interpreter encountered a BREAK
command while executing a program.
The BREAK command is used primarily
for program debugging and allows the
user to inspect the program, local
variables, and global variables at a
specified location within the program.
Program execution may be resumed by
using the ZGO command.

<CLOBR> An attempt was made to overlay the
current routine by issuing a ZLOAD,
ZREMOVE, or ZINSERT command from
within the routine.

<CMMND> The interpreter encountered an illegal or
undefined command.

<DIVER> An attempt was made to divide a
number by zero.

<DKFUL> No space is available on the disk within
the expansion limits of the current UCI.
Information that the system was trying
to write to the disk was lost. Database
corruption can result.

<DKHER> The M21 system encountered an
unrecoverable error while trying to read
from or write to a disk-type device. This
is caused by a hardware malfunction or
an attempt to reference a block that is
outside the physical bounds of the disk.

<DKSER> A block read in from the disk was not
the type expected by the system or the
block's internal structure was invalid.
This can occur if the database is
corrupted by a hard system failure such
as a power failure, or a hardware
malfunction such as an unrecoverable
disk error on a write operation.

<DMAIN> Invalid use of domain (mnemonic
namespace).

<DPARM> Invalid use of parameter passing.

<DSCON> The current device has been
disconnected from the system.

<DVTRN> Device translation error.

<ECODE> $ECODE has been set to a non-null
value.

12

Chapter 1. Error Trapping

<ESTAP> The system expression stack overflowed
while evaluating a complex expression or
saving a large routine.

<EXPER> An exponentiation error was detected.

<EXSYS> An error occurred while attempting to
send a cross-system request (M21 to M21
or DDP) or receive and process a request
from a remote system.

<FORMT> An attempt to access a global using
networking encountered a different
collating sequence or encoding for the
global than that expected.

<FUNCT> The interpreter encountered an
undefined function or a function that
was used improperly.

<INDER> The interpreter encountered illegal or
incorrect use of the indirection operator.

<INHIB> Access to a database using networking
failed because database read or write is
disabled on the remote machine.

<INRPT> The operating system received an
interrupt (BREAK) from the terminal
while the BREAK function was enabled
(a BREAK 1 command was in effect).

<ISYNT> An attempt was made to insert an illegal
line of text or code into the routine buffer.
This can occur if the line of code is too
long, the line label is invalid, or if the
character separating the line label and
the line body is incorrect. When an insert
is performed in direct mode, the
separator character must be a tab. If
ZINSERT is used, the separator character
must be one or more spaces or tabs.

<LEVEL> The maximum execution level for the job
has been exceeded.

<LFULL> An attempt to LOCK or ZALLOCATE a
variable resulted in the lock table
overflowing. The LOCK or ZALLOCATE
is not honoured.

<LINER> A reference was made to a line that does
not exist within the body of the routine.

<LKMEM> An attempt to LOCK or ZALLOCATE a
variable resulted in an error trying to
allocate shared memory. The LOCK or
ZALLOCATE is not honoured.

13

Chapter 1. Error Trapping

<LOMEM> An error occurred when trying to
allocate memory to increase the size of
the local partition.

<MAPER> A disk block that is being freed is
already marked free in the corresponding
MAP block.

<MERGE> A MERGE command was issued in
which either the right hand side or the
left hand side of the equals is not a local
or global reference, or one operand is a
descendant of the other operand.

<MINUS> The interpreter found a negative number
or zero when it expected a positive
number.

<MODER> An attempt was made to access the
device in a mode that is not consistent
with the parameters specified when the
device was opened.

<MMEM1> An attempt to allocate system memory
using malloc failed.

<MTERR> An error occurred during an input or
output operation to a magnetic tape
device.

<MXMEM> A memory address specified as an
argument to the VIEW command or
$VIEW function is outside the limits
allowed by M21.

<MXNUM> The value of a number is greater than the
largest number allowed by the system.

<MXREC> An attempt has been made to write a
record to a host file, IJC device or tape
device that exceeds the record size limit.

<MXSTR> The value of string exceeds the
maximum length allowed by the system.
The maximum is 255 characters (or 511
as an option) for global variables, and
4092 characters for local variables.

<NAKED> Access to a global variable using the
naked indicator is invalid. This can occur
if the naked indicator was not previously
set by a global reference or if the
previous global reference did not include
subscripts.

<NODEV> The system intercepted an attempt by
the program to OPEN a device that has
not been defined to the system.

14

Chapter 1. Error Trapping

<NOIMP> The configuration file parameter to treat
VIEW and $VIEW commands as not
implemented has been set and a VIEW or
$VIEW command has been encountered.

<NOPEN> The system intercepted an attempt by
the program to USE a device that was not
previously OPENed by the program.

<NOPGM> A reference was made to a program that
does not exist in the job's routine search
path.

<NOSYS> A reference was made to a non-existent
system through Distributed Data
Processing (DDP) or to a non-existent
volume group through an extended
global notation.

<NOUCI> A reference was made to a non-existent
UCI through an extended global
notation.

<PCERR> The interpreter found an illegal
post-conditional or the post-conditional
argument is invalid.

<PLDER> The routine that is being loaded has
down-level p-code or does not have the
correct type of p-code for a remote
volume group executing a routine.

<PROT> An attempt was made to access a
protected global that the user is not
authorized to access. This error also can
occur if an attempt is made to save a
program with a name that begins with a
percent sign (%) in any UCI other than
the Manager's UCI.

<SBSCR> The subscript used in a local or global
variable reference is invalid. This can
occur if the subscript is null; the
subscript contains the ASCII NULL
character; the length of a subscript is
greater than 255 characters; or the
combined length of the global reference
(global name, parentheses, subscripts,
and commas) is greater than 255.

<SSVN> Error involving the use of SSVNs.

<SYNTX> The interpreter encountered a syntax
error in the line that is being executed.

15

Chapter 1. Error Trapping

<SYSTM> The system encountered an internal
error. The exact error message, including
major/minor error numbers, should be
reported to technical support.

<UNDEF> The operating system intercepted an
attempt to reference a non-existent local,
global, or structured system variable or a
non-existent object method or property.

<VALUE> An invalid value, which exceeds a
system imposed limit, has been specified.
The major and minor error codes
determine what limit has been exceeded.

<VWERR> An attempt was made to access a device
in shared VIEW buffer mode without
ownership of the VIEW device (device
63). This error also occurs if the VIEW
device is closed before the device that
was opened in shared VIEW buffer
mode.

<XCALL> The function name specified on an
external routine reference does not exist,
or the parameters specified are invalid.

<ZAP’D> The job was killed or interrupted by the
KILLJOB or m21info utilities.

<ZSAVE> One of the lines in the routine that is
being compiled is too large to fit in the
disk buffer. The line should be split into
two or more lines to correct the problem.

<Zxxxx> A ZTRAP command was issued with
"xxxx" as the argument.

M21 Error Numbers
The following table lists the major and minor error numbers generated by M21 and
describes how each error is caused.

Table 1-2.

Major Minor Explanation

1 - Command type errors

0 Unrecognised command

2 - Argument type errors

16

Chapter 1. Error Trapping

1 Missing parenthesis

2 Missing or bad colon

3 Missing or bad equals

4 Missing or bad local
variable

5 Missing or bad global
variable

6 Missing or bad function

7 Missing or bad routine
name

8 Missing or bad routine
label

9 Missing or bad routine
offset

10 Indirect argument error

11 Argument condition error

12 Bad argument delimiter

13 Bad command

14 Missing brace

15 Missing square bracket

16 Invalid argument count

3 - Expression type errors

0 Bad special variable name

1 Bad system function

2 Bad local variable

3 Bad global variable

4 Bad string constant

5 Bad numeric constant

6 Unbalanced parenthesis

7 Invalid syntax in term

8 Bad operator

9 Bad delimiter

4 - Reference type errors

0 Undefined local variable

1 Undefined global variable

17

Chapter 1. Error Trapping

2 Undefined label

3 Undefined routine

4 Invalid naked reference

5 Non-existent device

6 Unsubscripted local
reference required

7 Variable reference
required (no expressions)

8 ZLOAD usage error
during routine execution

9 Undefined UCI reference

10 Attempted ZINSERT of an
invalid line

11 Unknown data type

12 Missing function
parameter

13 Undefined system in
cross-system reference

14 Global access protection
violation

15 VIEW restriction violation

16 Reserved for future use

17 Formal list not entered via
DO command

18 QUIT with argument
inside FOR scope

19 QUIT with argument, but
routine not extrinsic

20 Argumentless QUIT, but
routine was extrinsic

21 Extrinsic subroutine
ended without Q
parameter

22 Label requires a formal list

23 Actual parameters exceed
number in formal list

24 Formal list parameter is
subscripted variable

25 Duplicate variable name
in formal list

18

Chapter 1. Error Trapping

26 Passing value by reference
in JOB not allowed

27 Too many parameters to
JOB command

28 A JOB command
parameter is too long

29 Unable to delete routine
blocks

30 Unable to reload calling
routine

31 Unable to ZSAVE routine

32 Invalid first parameter to
$ZINFO function

33 Invalid $ZINFO table or
element

34 Invalid $ZINFO argument

35 LHS of MERGE is not a
local or global

36 RHS of MERGE is not a
local or global

37 Attempt to MERGE with
descendent

38 Device type does not
allow the use of domains

39 USE of domain not
specified on OPEN

40 Undefined domain
specified on OPEN

41 Reference to undefined
SSVN

42 Reference to undefined
SSVN node

43 Attempt to modify read
only SSVN

44 Unknown or unsupported
SSVN operation

45 Unknown device
translation table

5 - Value-type errors

0 Exceeded maximum small
string length - 255

19

Chapter 1. Error Trapping

1 $SELECT function error

2 Divide by zero

3 Negative number

4 Maximum number

5 Device not open

6 Invalid memory address

7 String value required

8 Indirection resulted in null
value

9 Indirection included more
than name

10 Selected partition not
active ($VIEW)

11 Invalid VIEW or $VIEW
argument

12 Function parameter out of
range

13 Invalid subscript

14 Device not open for access
type attempted

15 $ECODE set to non-null
value

16 Not allowed to write block
0

17 Invalid use of shared
mode on VIEW buffer

18 Raised zero to
non-positive power

19 Raised negative number to
non-integer power

20 Spooler I.O error

21 Spooler error

22 Routine cache error

23 Exceeded maximum large
string length - 1024

24 Reserved for future use

25 Exceeded current
maximum record length

26 Exceeded maximum small
record length - 255

20

Chapter 1. Error Trapping

27 Exceeded maximum large
record length - 16384

28 Value less than minimum

29 Value greater then
maximum

30 Exceeded maximum local
variable length

31 Exceeded maximum literal
string length

32 Exceeded maximum
pcode size for a block

33 Exceeded maximum
routine line length

34 Invalid value

35 Invalid block type

36 Invalid data type

6 - Environmental errors

0 Break key pressed

1 Unable to malloc a chunk
of memory

2 HALT command executed

3 LOCK table full

4 BREAK command
executed

5 Expression stack overflow

6 Reserved for future use

7 Old p-code needs to be
re-ZSAVED

8 Reserved for future use

9 Reserved for future use

10 Reserved for future use

11 Reserved for future use

12 I/O error on terminal
operation

13 I/O error on magnetic
tape operation

14 P-code too long to fit in
one block

21

Chapter 1. Error Trapping

15 ZQUIT error

16 Reserved for future use

17 ZTRAP command issued

18 Job has been killed

19 Local Symbol Table - out
of memory

20 Lock Table - out of
memory

21 Reserved for future use

22 Maximum execution level
reached

7 - Disk-type errors

0-14 Block type mismatch,
number is expected type

20 Bad block type requested

21 Hardware disk I/O error

22 Database full condition

23 Block number mismatch

24 Key/data exceeds
maximum length

25 Cannot open requested
database

26 Block being freed is
already free

27 Invalid block number

9 - Networking errors

0 Cross-system request
failure

1 CONFIGUREXSYS not set
to YES

2 Could not open local
stream socket

3 Connect to request server
failed

4 Send to request server
failed

5 Write to request server
failed

6 Input buffer overflow
getting XSYS response

22

Chapter 1. Error Trapping

7 Sequence no. mismatch
getting XSYS response

8 Request server closed its
end of socket

9 Read from request server
failed

$ECODE Errors
The following table lists the $ECODE errors generated by M21 and explains how the
errors are caused.

Table 1-3.

Code Explanation Equivalent $ZERROR
value

M1 Naked indicator
undefined

<NAKED>:::4:4

M2 Invalid "P" parameter in
$FNUMBER

<SYNTX>:::5:37

M3 $RANDOM seed less than
1

<SYNTX>:::5:24

M4 No true condition in
$SELECT

<SYNTX>:::5:1

M6 Undefined local variable
name

<UNDEF>:::4:0

M7 Undefined global variable
name

<UNDEF>:::4:1

M8 Undefined subscripted
system variable name

<UNDEF>:::4:41

M9 Divide by zero <DIVER>:::5:2

M11 No parameters passed <DPARM>:::4:17

M13 Line reference not found <LINER>:::4:2

M16 QUIT argument not
allowed

<DPARM>:::4:19

M17 QUIT argument required <DPARM>:::4:20

M18 Fixed length READ not
greater than zero

<SYNTX>:::5:38

M19 Cannot copy a tree or
subtree into itself

<MERGE>:::4:37

M20 Formal argument list
required

<DPARM>:::4:22

23

Chapter 1. Error Trapping

M26 Non-existent environment <NOUCI>:::4:9

M40 Call-by-reference in JOB
actual

<DPARM>:::4:26

M43 Invalid range value ($X ,
$Y)

<MINUS>:::5:3

M58 Too many actual
parameters

<DPARM>:::4:23

24

Chapter 2. $STACK

Returns information about the execution path leading to the current level and about
any errors that may have occurred.

Syntax

$ST{ACK}(Level{,StackCode})

Definition

Level An integer expression that specifies the execution level for which information
should be returned.

StackCode A string expression that specifies the type of information to be returned.

The single operand $STACK function provides the following information about the
execution stack.

• If Level evaluates to -1, the function returns the current execution nesting level.
The $STACK special variable returns the same value as $STACK(-1) .

• If Level evaluates to 0 and if the partition was initiated via the JOB command, the
function returns 1. Otherwise, it returns 0.

• If Level evaluates to a positive integer that is less than or equal to $STACK(-1) ,
the function returns a value that indicates how that execution level was initiated.
If initiated by a command, the function returns the name of the command fully
spelled out and in uppercase (for example: DO or XECUTE). Otherwise, if it was
initiated by an extrinsic function or variable, then the function returns $$.

• If Level evaluates to a value greater than $STACK(-1) , the function returns an
empty string.

• All other values of Level are reserved for future extensions.

The two-operand $STACK function provides information about the execution level
specified using the first operand. The second operand specifies the information to
return. This operand can be in uppercase, lowercase, or mixed case, all being equiv-
alent.

• If StackCode evaluates to ECODE , the function returns the list of error codes
added at this level or the empty string if no errors occurred at this level.

• If StackCode evaluates to MCODE , the function returns the text of the line iden-
tified by $STACK(Level,"PLACE") .

• If StackCode evaluates to PLACE , the function returns the last command exe-
cuted at the specified level. If the location is a routine line, the format of the func-
tion value is +offset^routine . If the location is an XECUTE command string, the
function returns the at-sign character (@).

• All other values of StackCode are reserved for future extensions.

Examples

Table 2-1.

Function Return Value/Description

25

Chapter 2. $STACK

$STACK(-1) 10 The current nesting level is 10.

$ST(10,"ECODE") ,M9,M6, Both a division by zero and a
reference to an undefined local occurred
at the same level. This can happen if the
second error occurred inside the error
trap itself.

$ST(10,"MCODE") WRITE !!,A/B This shows the line
executing when the error occurred.

$ST(10,"PLACE") +5^ERRHAND The last error occurred
at line +5 in routine ERRHAND .

26

Chapter 3. $ECODE

Contains a list of error codes encountered by the application.

Syntax

$EC{ODE}

Definition

The $ECODE special variable contains a string that identifies the errors encountered
by the application. The string value of $ECODE is in the following format:

,ErrorCode1,ErrorCode2, ... ,

Note that a comma precedes and follows each error code. Error codes are in one of
the following formats:

Mnn where nn is an integer specified by the ANSI standard

Uxx where xx is any user-defined string not containing a comma

Zxx where xx is defined by the version of M21 (M21-specific)

The M values are integer numbers specified by the 1995 ANSI M standard (and subse-
quent Type A amendments) issued by the MUMPS Development Committee (MDC)
in an effort to standardise error conditions.

The U values are any user-defined strings that do not contain a comma. These are
typically application-specific error codes managed by application-specific error han-
dling routines that examine the value of $ECODE .

The Z values are implementation-specific error codes. For M21, they are the same
values that are assigned by M21 to the $ZERROR special system variable.

Note that, when an error occurs which has an M error number as defined by the
1995 ANSI M standard, then this error code is appended to $ECODE , but the M21
$ZERROR equivalent is not. M21 $ZERROR messages are only appended when no
equivalent ANSI M error code exists.

Refer elsewhere in this document for a list of the ANSI M error numbers and M21-
specific error codes.

Considerations

When the value of $ECODE is the empty string, normal routine execution is in effect.

Error processing is initiated when:

• $ECODE transitions from an empty to a non-empty string. The value of $ECODE
may change implicitly when M21 detects an error condition (such as an undefined
variable), or when explicitly SET by the application.

• A QUIT returns from an execution level with $ECODE non-empty to a level in
which no error had occurred. For example, $STACK(new level,"ECODE") is the
empty string.

• When the value of $ECODE is changed via the SET command, the new value re-
places the existing value. When this happens an error occurs.

• When a partition is initiated, $ECODE has the value of the empty string.

Examples

27

Chapter 3. $ECODE

This code displays the individual error codes in $ECODE on individual lines:

FOR I=2:1:$L($ECODE,",")-1 WRITE !,$P($ECODE,",",I)

28

Chapter 4. $ESTACK

Indicates the relative execution nesting level.

Syntax

$ES{TACK}

Definition

The $ESTACK special variable contains a non-negative integer specifying the rela-
tive nesting of the current execution level. The value is automatically incremented
by the DO and XECUTE commands, and automatically decremented by the QUIT
command. The NEW command may be used to stack the current value and reset $ES-
TACK to 0 . A QUIT command (explicitly or implicitly at the end of a routine or an
XECUTE string) restores the stacked value. A new partition begins with $ESTACK
set to 0 .

Considerations

An application may stack the value of $ESTACK and reset it to 0 via the NEW com-
mand. Subsequent error handling routines may pop the execution levels until $ES-
TACK returns to 0 , at which point execution returns to its initial starting level for the
application. This is useful for nested applications. If $ESTACK is not stacked by the
NEW command, it always equals $STACK .

Examples

This command pops the current execution level as long as $ESTACK is positive. Note
that if $ECODE has not been reset to the empty string, returning from an execution
level with $ECODE not null automatically invokes error handling for the returned-to
execution level:

QUIT:$ESTACK>0

This command stacks the current $ESTACK value; resets the current value of $ES-
TACK to zero; defines the error handling string; and invokes the application:

NEW $ESTACK SET $ETRAP="D ERROR^ROUTINE" DO APPL

29

Chapter 4. $ESTACK

30

Chapter 5. $ETRAP

Specifies the string to be executed when an error condition is detected.

Syntax

$ET{RAP}

Definition

The $ETRAP special variable contains a string of M code to be executed when an
error condition is detected. The code is executed at the same execution level at which
the error occurs. Prior to execution of the string in $ETRAP , any active FOR loops
and indirection in the current execution level are terminated. Execution behaves as
if the contents of $ETRAP are appended to the current routine with a temporary but
unique label, and an internal GOTO to the appended code is performed. Updating
$ETRAP replaces its previous value.

The current value of $ETRAP can be stacked using the NEW command. The NEW
command does not alter the value of $ETRAP ; it merely stacks it. New partitions
begin with $ETRAP set to the empty string. When $ETRAP is SET , the value of
$ZTRAP also is reset to the empty string so that at any time, either $ETRAP or
$ZTRAP defines the error handling environment, but not both.

Considerations

Within an application, the NEW command can be used to stack the caller's $ETRAP
until a QUIT command (implicit or explicit) is executed at the current execution level.

Unlike $ZTRAP , the value of $ETRAP is not tied to an execution level unless the
NEW command is used. Therefore, the application can set $ETRAP at the start of the
application. The same $ETRAP value is used at each nested level if an error condi-
tion is detected. When initiating error processing, M21 performs an explicit GOTO
(without changing the execution level) to the following two lines of code.

...value of $ETRAP...

QUIT:$QUIT "" QUIT

Examples

This example stacks the current value in $ETRAP and establishes a new string to be
executed if an error condition is detected.

NEW $ETRAP SET $ETRAP="D ERR^ROUTINE"

31

Chapter 5. $ETRAP

32

	Table of Contents
	Chapter 1. Error Trapping
	Actions: When an Error Condition is Detected
	Actions: When ErrorHandling is Specified
	Default Error Processing
	UserDefined Error Processing
	UserDefined Error Processing $ETRAP
	UserDefined Error Processing $ZTRAP

	Processing Trapped Errors
	Using the System Error Trap
	%MuErr1
	%MuErr

	Using Old Style Error Trapping
	Format of $ZERROR
	M21 Error Codes
	M21 Error Numbers
	$ECODE Errors

	Chapter 2. $STACK
	Chapter 3. $ECODE
	Chapter 4. $ESTACK
	Chapter 5. $ETRAP

